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Abstract
The selection of a material to meet given design requirements generally requires that a
compromise be struck between several, usually conflicting, objectives. The problem is
complicated because the decision-space is large, it is discrete rather than continuous, and the
relative value to be placed on each objective is imprecisely known. Here we explore the ways
in which multi-objective optimisation methods can be adapted to address this problem. We
find that trade-off surfaces give a way of visualizing the alternative compromises, and that
“utility” functions (or “value” functions) identify the part of the surface on which optimal
solutions lie. Implementing this for two objectives is straightforward, but doing so for more
then two requires new visualization tools. Here we develop a tool and illustrate its use.
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1. Introduction

Real-life decision-making frequently requires that a compromise be reached between
conflicting objectives. The compromises required to strike a balance between the performance
and the cost of a car, or between health and the pleasure of eating rich foods, or between
wealth and quality of life, are familiar ones. Similar conflicts arise in the choice of materials.
The objective in choosing a material is to optimise a number of metrics of performance in the
product in which it is used. Common among these metrics are cost, mass, volume, power-to-
weight ratio and energy density, but there are many more. Conflicts arise because the choice
that optimises one metric will not, in general, do the same for the others; then the best choice
is a compromise, optimising none but pushing all as close to their optima as their
interdependence allows. This paper concerns multi-objective optimisation of material choice.
It extends established methods for multi-objective optimisation [1-6] and for material
selection [7, 8]. The methods are equally applicable to material selection, and to the inverse
problem of identifying promising applications for new materials.

2. Optimised material selection

2.1 Multi-objective optimisation and trade-off surfaces
Any engineering component has one or more functions: to support a load, to contain a
pressure, to transmit heat, and so forth. In designing the component, the designer has an
objective: to make it as cheap as possible, perhaps, or as light, or as safe, or some
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combination of these. This must be achieved subject to constraints: that certain dimensions
are fixed, that the component must carry the given mechanical, thermal and electrical loads
without failure, that it can survive for its design-life in a given environment, and many more.

When there are two or more objectives, solutions rarely exist that optimise all at once.
Economic lightweight design is an example: the best solution (including material choice) is
the one that minimises both the weight and the cost. The example nicely illustrates the
difficulties: the objectives are measured in different units (here, kg and $) and they are in
conflict, meaning that any improvement in one usually results in deterioration in the other.
The situation is illustrated for two objectives by Figure 1(a) in which one performance metric,
P2, is plotted against another, P1. Minima are sought for both. Each bubble describes a
solution. The solutions that minimise P1 do not minimise P2, and vice versa. Some solutions,
such as X and Y, are far from optimal – other solutions exist with lower values of both P1 and
P2. Solutions like X and Y are said to be dominated by others. Solutions like those at A, B
and C have the characteristic that no other solutions exists with lower values of both P1 and
P2. These are said to be non-dominated solutions. The line or surface on which they lie is
called the non-dominated or optimal trade-off surface. The values of P1 and P2 corresponding
to the non-dominated set of solutions are called the Pareto set [1, 3, 9].
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Figure 1. (a) [left] A trade-off plot for performance metrics P1 and P2, showing dominated and non-dominated
solutions. The non-dominated solutions lie on the trade-off surface. (b) [right] Contours of value V with slope

–1/α, superimposed on the trade-off plot. Solution A has the lowest value of V for the chosen value of the
exchange constant α.

The trade-off surface identifies the subset of solutions that offer the best compromises
between the objectives. However, designers ultimately need to select a single solution. One of
the most common ways in which to make such a choice is to aggregate the various objectives
into a single figure of merit. A composite objective function is formulated such that the
minimum of the function defines the most preferable solution. To do this a locally linear
utility function, V, is defined [1, 10]:
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where M is the number of objectives. This allows a local minimum to be found. When the
search space is large, it is necessary to recognise that the values of the exchange constants αi
may themselves depend on the values of the performance metrics Pi.
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The utility function reflects the preferability, or utility, or value (equivalent terms) of each
solution. The α‘s are called exchange constants (or, equivalently, utility constants or scaling
constants); they convert the units of performance into the unit of utility, V, which is usually
that of currency ($). The exchange constants are defined by
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That is, they measure the change in utility for a unit change in a given performance metric, all
others being held constant. For instance, if the performance metric P1 is mass m (to be
minimised), α1 is the change in utility V associated with unit increase in m. The best solution
is the one with the smallest value of V, which, with properly chosen values of the exchange
constants, now correctly balances the conflicting objectives.

Frequently one of the objectives to be minimised is cost, C, so that CPM = . Since we have
chosen to measure utility in units of currency, unit change in C gives unit change in V, with
the result that 1=Mα  and equation (1) becomes
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If M = 2, for a given value of V and the exchange constant α, equation (3) defines a
relationship between the performance metrics C and P. This yields a family of parallel lines
each for a given value of V, as shown in Figure 1(b). The slope of these utility lines is the
reciprocal of the exchange constant - α/1 . The best solution is that at the point at which a
utility line is tangential to (a convex part of) the trade-off surface. Here solution A is the best
choice.

2.2 Values for the exchange constants, αi

An exchange constant is a measure of the utility, real or perceived, of a performance metric.
Its magnitude and sign depend on the application. Thus the utility of weight saving in a family
car is small, though significant; in aerospace it is much larger. The utility of heat transfer in
house insulation is directly related to the cost of the energy used to heat the house; that in a
heat-exchanger for power electronics can be much higher. The utility of performance can be
real, meaning that it measures a true saving of cost, energy, materials, time or information.
But utility can, sometimes, be perceived, meaning that the consumer, influenced by scarcity,
advertising or fashion, will pay more or less than the true value of these metrics.

In many engineering applications the exchange constants can be derived approximately from
technical models for the life-cost of a system. Thus the utility of weight saving in transport
systems is derived from the value of the fuel saved or that of the increased payload, evaluated
over the life of the system (Table 1); the utility of heat transfer can be derived from the value
of the energy transmitted or saved by unit change in the heat-flux etc. Approximate exchange
constants can sometimes be derived from historical pricing-data [10, 11]; thus the utility of
weight saving in bicycles can be estimated by plotting the cost C of bicycles against their
mass m, using the slope )/( dmdC−  as a measure of α. Finally, exchange constants can be
found by interviewing techniques [12, 13], which elicit the utility to the consumer of a change
in one performance metric, all others being held constant.
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Table 1. Exchange constants α for structural components of transport systems [8].

Sector: Transport systems Basis of estimate Exchange constant US$/kg
family car fuel saving 0.5-1.5

truck payload 5-10
civil aircraft payload 100-500

military aircraft payload, performance 500-1000
space vehicle payload 3000-10000

2.3 How do exchange constants influence choice?
The previous section shows that exchange-constant values depend on the application, and that
each application is associated with a characteristic range of exchange-constant values. The
discreteness of the search space for material selection means that a given solution on the
trade-off surface, such as A in Figure 1(b), is optimal for a certain range of values of α; but
outside this range another solution becomes the optimal choice. Figure 2 illustrates this. For
simplicity solutions have been moved so that, in this figure, only three are potential optima.
The remaining non-dominated solutions (D-H) are now on concave sections of the trade-off
surface. For α < 0.1, C is the optimum; for 0.1 < α < 10, A is the best choice; and for α > 10,
it is B. This information is captured in the bar on the right of the figure representing the range
of values of α, subdivided at the values at which a switch of optimum occurs, and labelled
with the solution that is optimal in each range.
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Figure 2. The switches in optimal choice as the exchange constant increases from below 0.1 to above 10. The
band at the right shows the range of values of α for which a given solution is optimal.

This suggests a way of extending this form of visualisation to three objectives. It is illustrated
in Figures 3 and 4. Figure 3 shows a hypothetical trade-off surface for three performance
metrics, one of which is cost. Utility is defined by

2211 PPCV αα ++= (4)

The two exchange constants α1 and α2 relate P1 and P2 to cost, C. The segments of the bar in
Figure 2 now become areas, each defining the range of α1 and α2 values for which a given
solution that lies on the P1-P2-C trade-off surface is optimal. Remembering that a given
application is characterised by given ranges of α1 and α2, such a figure, a hypothetical
example of which is shown in Figure 4, offers a way of identifying the best solution for a
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given application. This reasoning can also be inverted: if a new material (such as H in Figure
4) lies on a convex part of the surface, it will appear somewhere on this diagram; its position
suggests applications for which it might be suited.
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Figure 3. A trade-off surface for three objectives, one that of minimising cost.
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Figure 4. The exchange-constant band shown on the right of the two-objective plot in Figure 2 becomes for
three objectives an exchange-constant chart, as shown here.

We have developed an algorithm for identifying the Pareto set for an arbitrary number of
objectives and for plotting charts like Figure 4 for any three of them. This is described next.

2.4 The algorithm
Consider the following example. We define performance metrics P1, P2 and P3 for solutions
to a design problem based on the alternative material choices A-E. The selection procedure
starts by seeking the non-dominated solutions. We adopt the criteria proposed by [1] to
determine dominance and non-dominance (assuming all performance metrics are to be
minimised):
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If all the performance metrics Pi for material ‘A’ are equal to or less than those
for material ‘B’,

and there is at least one performance metric for material ‘A’ that is less than that
for material ‘B’ (neither dominates when all their metrics Pi are identical),

then material ‘A’ dominates material ‘B’.

The set of comparisons can be shown as a square matrix, the dominance matrix, of size equal
to the number of materials in the database. Its cells contain the dominance index, which is
defined as the number of performance metrics Pi for that row’s material that have values
equal to or less than those for the material of the corresponding column. If the dominance
index equals the number of objectives and all the performance metrics are not identical, the
material corresponding to that row dominates the one for the corresponding column. The non-
dominated materials are then identified as the materials with columns that do not contain any
dominance indices that equal the number of objectives.

This sounds simple, but it can be computationally intensive for large material databases.
Deterministic methods can be used to reduce the number of steps, as illustrated in Figure 5 for
the hypothetical data set given in Table 2.

Table 2. Hypothetical data set for the example shown in Figure 5.

Material P1 P2 P3
A 2.0 5.0 3.0
B 10.0 8.0 7.0
C 6.0 4.0 8.0
D 2.0 5.0 3.0
E 5.0 4.0 2.0

Material A B C D E
A 0 3 2 −1 1

B 0 0 0 0 0

C 0 0 0 1 1

D 0 0 0 0 1

E 0 0 3 0 0

Dominated No Yes Yes No No

Figure 5. An example of a dominance matrix and the shortcuts used in constructing it.

Once the non-dominated set is identified, a utility function is used to find a final solution. An
optimal solution, for a given set of exchange constants, is found by comparing the utility
function for each non-dominated solution, remembering that, in the convention adopted here,
the solution with the lowest V is the best choice. By stepping through values of the exchange
constants and identifying the optimal non-dominated solution for each set of values, a chart
like that of Figure 4, showing the ranges of exchange constants for which each non-dominated
solution is optimal, can be constructed.

3) All A’s and D’s performance
metrics are identical. “−1” is
inserted in location (A, D) to
signify this.

2) B is dominated by A, further
comparison between B and
other materials is skipped.

4) In comparing C and E it is
found that E dominates C. The
number of the objectives is
inserted in location (E, C) to
signify this.

5) A material is dominated if any
dominance index in its column
equals the number of the
objectives (3 in this case).

1). Comparisons made
only in the upper
diagonal part of the
matrix.
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The boundaries separating the fields in this chart are equal utility boundaries; on the
boundaries two non-dominated solutions have the same, lowest, utilities simultaneously. To
locate these boundaries, the non-dominated solutions are equated in pairs, defining the
trajectory along which ji VV = , i.e. where

0)()()( 2211 =++=− −−− jijijiji PPCVV ∆α∆α∆ (5)

jiNji ≠∈∀ ,, , N being the number of non-dominated materials.

This algorithm has been applied to material selection problems using a database of properties
for 3,000 materials [14]. Typical output is as shown in Figure 6, which is the solution to the 3-
objective problem detailed in Section 3, requiring the minimisation of mass and cost while
maximising heat transfer. On the x-axis is the exchange constant for mass and cost, α1; on the
y-axis is that for heat transfer and cost, α2. The material in the bottom left corner (cast iron) is
the best choice when minimising cost is paramount, but, as the importance attached to low
mass and/or high heat transfer increases, the optimal choice changes. Note that exact values
for the exchange constants for a given application, which are often difficult to establish, are
not required: a given material is generally optimal over substantial ranges of α1 and α2 values.
In addition, sensitivity analysis, which enables the designer to scrutinise the effects of varying
his/her preference articulation (by varying the values of the exchange constants), can be
performed very easily using such a chart.
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Figure 6. An exchange-constant chart for a design problem with three objectives: those of minimising mass and
cost, and of maximising heat transfer. Details are given in Section 3.

3. Case study: Materials for a disk brake calliper

To see in more detail how our method works, a case study is helpful. Figure 7 shows a
schematic of a brake calliper for a high performance car. It can be idealised as two beams of
length L, width b and thickness h, locked together at their ends. Each is loaded in bending and
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is exposed to high temperatures. The lower schematic represents one of the beams; its length
L is given, and b scales with h such that hb γ= , where γ  is a shape-factor. The beam
stiffness S is critical: if it is inadequate the calliper will flex, impairing braking efficiency and
allowing vibration. Its ability to transmit heat, too, is important since some of the heat
generated in braking must be conducted out through the calliper.

 L

F

h,∆T

q

Figure 7. A schematic of a brake calliper. The long arms are loaded in bending.

There are three objectives: minimising mass, maximising heat-transfer and minimising cost.
The mass of the calliper scales with that of one of the beams, described by the equation

ργρ 2hLhbLm ==  (kg) (6)

where ρ is the density of the material of which it is made. Heat transfer rate q depends on the
thermal conductivity λ  of the beam material:

TL
h
TbLq ∆λγ∆λ ==  (W) (7)

where T∆  is the temperature difference between the surfaces. Finally, the material cost
depends on the mass m and the cost per unit mass, Cm, of the beam material:

mCC m=  ($) (8)

The quantities L, γ and T∆  are specified. The only free variable is the thickness h. But there
is a constraint: the calliper must be stiff enough to ensure that it does not flex or vibrate
excessively. To achieve this we require that
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where S* is the desired stiffness, E is Young’s modulus, C1 is a constant which depends on the
load distribution and 12/12/ 43 hbhI γ==  is the second moment of area of the beam. Thus
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Inserting this in equation (6) and rearranging gives an equation for the performance metric P1:
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Rearranging equation (7) gives:

TLq
P

∆λγ
11

2 ==  ( 1W− ) (12)

To identify optimal solutions we must combine equations (8), (11) and (12) in the utility
function

2211 PPCV αα ++=  ($) (13)

where α1 has units of $/kg and α2 of $/(W-1). Figure 6, introduced earlier, is an exchange-
constant chart derived from equation (13), showing how the optimal choice changes as the
exchange constants vary. The materials with the highest performance (and cost) lie towards
the top right corner. When low mass and high heat-transfer are very highly valued, as they are
in Formula 1 racing, these are the optimal choices. Among them is a novel Al-Be powder
metallurgy alloy that combines the high conductivity of aluminium with the low density and
exceptional stiffness of beryllium – but at a price. A brake calliper designed for Ferrari
Racing is made of precisely this alloy [15].

Note how the method points to applications for new materials, of which the Al-Be composite
is an example. If it were not in the database, the materials that surround it in Figure 6 would
occupy its space. Add it to the database and it appears at the position shown. Its “co-
ordinates” in α1-α2 space identify applications in which stiffness at low mass and high heat
transfer are highly valued, and identify the materials that compete with it for this market.

4. Conclusions

Almost all material selection problems require that a compromise be sought between some
metric of performance and cost. Trade-off methods using utility functions allow optimal
solutions to be found for two objectives, but for three it is harder. Here we develop and
demonstrate a method for dealing with three objectives. It involves an algorithm for
identifying the trade-off surface for a multi-objective problem, and a novel way of showing
how the optimal choice depends on the relative value attached to each objective. In a single
chart the designer is presented with an overview of every possible outcome (for every set of
preferences) for a given application, and is readily able to see the effects of varying their
preferences. Thus the new approach provides additional insights into material selection
problems, which are not available using other material selection methods. The method lends
itself to implementation in software as part of a design tool to guide material selection.
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