INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED'09
24 - 27 AUGUST 2009, STANFORD UNIVERSITY, STANFORD, CA, USA

CO-EVOLUTION OF PRODUCTS & COMMUNITIES IN
MASS COLLABORATIVE PRODUCT DEVELOPMENT
- A COMPUTATIONAL EXPLORATION

Jitesh H. Panchal
Washington State University, Pullman, WA, USA

ABSTRACT

Mass collaborative product development (MCPD) refers to a paradigm where large numbers of people
collaborate globally as communities to develop products and services. It is based on bottom-up
evolution as opposed to traditional top-down decomposition. The evolution of products developed
through MCPD processes is coupled with the evolution of associated communities. In this paper, the
co-evolution of products and communities is modeled as a complex self-organizing system. The
proposed approach is based on agent-based modeling and Social Network Analysis (SNA). It allows
the modeling of participant behavior within MCPD scenarios and captures the information about 1)
products as modules and their interdependencies, and ii) participants as decision-making agents. The
evolving community is modeled as a weighted directed graph and analyzed using SNA metrics. The
following aspects of the product development processes are studied: evolution of modules, evolution
of number of participants associated with modules, community structures, effort distribution,
distribution of the number of collaborating partners, and the effect of product dependencies on the
community structure.

Keywords: Mass Collaboration, Product Development, Agent-based Modeling, Evolution, Social
Network Analysis

1. INTRODUCTION: CO-EVOLUTION IN MASS COLLABORATIVE PRODUCT

DEVELOPMENT

Mass collaborative product development (MCPD) refers to a paradigm where large numbers of
individuals work together in the form of loose networks of peers to produce goods and services [1]. It
is different from traditional product development processes where individuals organized in
hierarchical teams collaborate with each other on well defined tasks that are aligned to achieve the
overall organizational goals. Examples of mass collaborative product development efforts include
Wikipedia [2], Linux [3], Mozilla Firefox [4], and Apache [5]. Examples of physical product
development projects that utilize these concepts are open source car (OScar) [6] and Open Prosthetics
[7]. In the open source car project, the goal is to develop a car using open source principles. In the
open prosthetics project, the objective is to share CAD models of prosthetic devices as open source
designs, which can be further developed and refined by others.

The differences between mass collaborative product development and traditional product
development are detailed in [8]. Traditional product development processes are top-down
decomposition-based processes whereas mass collaborative product development processes are driven
by the principles of evolution and self-organization. Traditional processes are based on the
decomposition of the overall function of the product into sub-functions, and developing subsystems
for satisfying individual sub-functions. The subsystems are designed by teams through well-defined
tasks assigned to hierarchically structured teams. The participants work together on well-defined tasks
towards achieving the common goals of the organization. In contrast, the organizational (community)
structures in MCPD are relatively flat and consist of independent participants working on different
aspects of the project according to their expertise and interests. Instead of assignment of tasks, the
participants pick up tasks that they would like to work on. Due to the fundamental differences
between the two types of product development processes, the factors that affect the design processes
are very different. Panchal and Fathianathan [9] discuss various research issues related to engineering

ICED'09 1-49

design where progress is necessary for further development of this area, including a) product
realization processes, b) coordination between stakeholders, ¢) structure of product realization teams,
d) collective learning and evolution, e) incentives to participants, f) product architectures, g) product
co-design, /1) product-service systems, and i) information and computation.

The importance of the alignment of product architecture and organizational structure is well known in
the product development literature [10]. It is particularly important in MCPD processes due to the
highly interrelated nature of the community and product evolution. Since no organizational structure
is imposed at the start of the process, the structure evolves as more participants join the product
development effort and collaborate with existing participants. According to Conway [11], “any
organization that designs a system (defined more broadly than just information systems) will
inevitably produce a design whose structure is a copy of the organization's communication structure”.
This illustrates the dependence of the product structure on the organizational structure. At the same
time, the communication between different participants is based on the product structure and is driven
by the dependencies between subsystems, implying the effect of product structure on organizational
structure. Hence, the systems (products) and the organizational structures are highly interdependent in
nature. This interrelated nature is particularly important in mass collaborative projects due to its
evolutionary nature — the product evolves over time based on the contributions of the participants and
the community structure evolves as more participants join the efforts. The co-evolution of the product
and the community structures result in the self-organizing nature of MCPD processes.

Existing research on organizational structures in mass collaborative processes is mainly carried out in
the domain of open source software (OSS) development. Various researchers have presented
empirical studies based on the data from existing OSS projects. Different types of organizational
structures have been shown to emerge in different projects. For example, the community structure of
Linux project is represented as a pyramid, the community structure of BSD project is represented as
concentric circles, etc. [12]. Crowston and Howiston [13] study the community structure of OSS
projects using metrics for centralization and hierarchy. In a related effort, Valverde and Sole [14]
study the hierarchy of OSS social networks. Xu and Madey [15] present a quantitative study of the
interactions of the developer community at SourceForge and present the topological and evolutionary
statistics for OSS social network. Madey and co-authors [16] present an agent-based model to
investigate OSS communities. Weiss and co-authors [17] use the OSS mailing lists to study the
community structure and its evolution. The authors also discuss the effect of project dependencies on
information flow between participants. Ye et al. [18] present the interrelationship between the
evolution of software systems and the communities.

Despite the studies in the open source domain, the fundamental dynamics governing the co-evolution
of product and community structure is not completely known. Prior work is mainly focused on
empirical studies of existing projects. As highlighted by Panchal [8] mass collaborative product
development efforts are significantly influenced by factors such as the initial product structure,
participants’ preferences, initial amount of work, etc. An understanding of the impact of these factors
is important in gaining a holistic understanding of the dynamics of mass-collaborative processes. In
this paper, a step towards the exploration of the interrelated nature of products and organizational
structures in mass collaborative product development efforts is presented. The approach used in this
paper is based on agent-based modeling [19, 20] to simulate the decisions of participants, their
interactions with the product, and collaboration with other participants in a mass collaborative effort.
The model is used to study the effect of various factors affecting the co-evolution of products and
community structures. The community structures are characterized using metrics from Social
Network Analysis [21, 22]. An overview of agent-based modeling and social network analysis are
provided in Section 2. The details of the agent-based model are presented in Section 3. The results
from the model for an illustrative scenario are presented in Section 4; and closing thoughts are
presented in Section 5.

2. BACKGROUND OF APPROACHES USED IN THIS PAPER
2.1. Agent-based Modeling
Agent-based modeling is a technique used to simulate systems consisting of autonomous interacting

entities called agents [19, 23-25]. These agents represent various different types of entities such as
cells, plants and animals in biological simulations, atoms and molecules in chemical simulations,

1-50 ICED'09

individuals and organizations in financial simulations, and vehicles in traffic simulations. Agents have
their own behaviors (and goals). An agent acts based on the limited information available to it about
its environment. The primary advantage of an agent-based model is that it allows the study of
emergent behavior of complex systems in a bottom-up fashion. The agent-based modeling technique
has gained significant popularity in social sciences [20, 23], traffic simulations, organizational
science, and computational economics, supply chains, and stock markets. Agent-based modeling is a
micro-simulation technique that is based on modeling individual agent behavior, as opposed to the
characteristics of the entire set of agents in a macro simulation [24]. Various commercial and open
source tools such as Swarm, Repast, and Netlogo are available for agent-based modeling. For more
details, please refer to [19].

2.2. Social Network Analysis

Social Network Analysis (SNA) is the study of social relationships in the form of nodes and arcs [21,
22]. The nodes in a social network are individual actors, and arcs are relationships between the actors.
For example, a network of friends can be modeled as nodes representing people and arcs representing
friendship. Social networks can be either directed or undirected. The arcs may also carry weights to
represent strengths of the relationships between actors. For example, in a friendship network, the
strengths of friendships can be represented as weights on the arcs. SNA involves the study of the
structure of social networks using various metrics (such as clustering, hierarchy etc. discussed in this
section) which quantify different characteristics of the networks. Social network analysis has been
used to study organizational structures in OSS literature [14, 16]. In this paper, various metrics from
SNA are used to quantify the nature of organizational structures generated from the agent-based
model presented in Section 3. Specifically, the following metrics are used in this paper: clustering,
hierarchy, and centrality. The details of these metrics are provided in [22].

2.2.1. Clustering

The density of a network refers to the proportion of all possible ties that are actually present. In a
weighted network, the density corresponds to the average strength of ties over all possible ties. The
neighborhood of an actor refers to the set of all actors directly connected to that actor. Two types of
clustering coefficients are defined — overall graph clustering and weighted graph clustering. The
former is the average of the densities of the neighborhood of all the actors. The latter assigns a weight
to the neighborhood densities proportional to the size of the neighborhoods.

2.2.2. Krackhardt’s Dimensions of Hierarchy

Krackhardt [25] developed a set of metrics to measure the extent of hierarchy in a network. The

metrics are based on the deviation from an ideal hierarchy — an out-tree graph, which is a directed

graph in which all points are connected and all but one node has an in-degree of 1 (i.e., all actors in
the graph have a single superior node). A network can deviate from this ideal hierarchy in four
different dimensions. These dimensions are quantified by the following four measures:

e Connectedness: 1f all the actors are connected in a unitary structure, then the graph is more
hierarchical. The connectedness measure is based on the ratio of the number of pairs that are
reachable relative to the number of ordered pairs.

e Hierarchy: Reciprocal relations imply equal status (i.e., not hierarchical). Hence, the degree of
deviation from pure hierarchy is measured by counting the relations that have reciprocated ties
relative to the number of pairs with any tie.

e [Efficiency: In a pure out-tree, each actor has a single boss. The amount of deviation from this is
measured by counting the difference between actual number of links and the maximum possible
number of ties (greater difference implies greater inefficiency).

e Least upper bound: In an ideal hierarchy, the command must be unified (i.e., each pair of actors
should have an actor that directs ties to both). The deviation from that is measured as the number
of pairs of actors that do not have a common boss relative to the number of pairs that could.

2.2.3. Centrality

The centrality metrics are based on the position of an actor within the network. An actor has power if
it has a favored position and has more opportunities to share information and influence other actors.
Actors with more ties have greater power due to their choices to communicate with other actors.

ICED'09 1-561

Three different types of centrality are defined: degree centrality, closeness centrality, and betweenness
centrality. Actors that are more central to the structure have higher degree (i.e., connectedness) tend to
have favored positions and hence, more power. This notion of centrality is referred to as degree
centrality. Closeness centrality focuses on the distance from each actor to another. Betweenness
centrality is associated with the notion of relations being central to the network. Centrality is a
concept that applies to individual actors within a network whereas centralization measures how
unequal the distribution of centrality within the network is. In this paper, degree centralization is used
for quantifying the community structure in MCPD processes.

The metrics described in this section are used to model the communities resulting from the proposed
agent-based model which is discussed next. The networks presented in this paper are analyzed using a
software application called UCINet [26].

3. PROPOSED AGENT-BASED MODEL FOR STUDYING COEVOLUTION OF
PRODUCTS AND COMMUNITY STRUCTURES

3.1. Product Model

The product model used in this paper is represented as a
directed graph consisting of modules and dependencies
between modules. An example of a product model is shown
in Figure 1, which consists of nine modules (labeled from
0-8) and fifteen dependencies. Each module is associated
with two key parameters: percentage completion and
growth rate. The percentage completion denotes the extent
to which a module is complete at a given point in time. The
growth rate is used to quantify how fast a module grows in
each cycle when worked upon by a single participant. It is
expressed as a percentage increase in the module, and is
calculated based on the percentage completion at that point
in time. The default growth rate used in this paper is 1%.
For example, if the percentage completion of a module is
50% and one participant works on it in one cycle, then the
resulting percentage completion of the module is 50.5%.
Each of the dependencies between two modules is associated with a parameter called dependency
strength. The strength of dependencies is modeled as the amount of rework required in the target
module due to the changes in the originating module. For example, in Figure 1, the dependency from
Module 0 to Module 3 is 2.2, which implies that if there is a change in Module 0 it results in a 2.2%
rework in Module 3. Similar to the growth rate, the rework is also calculated based on the percentage
completion of the target module at that time. Some of the module pairs (such as Modules 0 and 3)
have unidirectional dependencies while others (such as Modules 0 and 1) have bi-directional
dependencies implying that both the modules are coupled with each other. Note that the bi-directional
dependencies are modeled as two separate dependencies. The dependency strength is modeled after
the “rework impact” metric proposed by Cho and Eppinger [27, 28].

The product model shown in Figure 1 is used throughout the rest of the paper as an illustrative
example of a product developed using MCPD process. This product model was used in prior work
related to this topic. It consists of a set of core modules that strongly influence each other and a set of
external modules that are relatively independent of each other but strongly depend on the core
modules [29]. Modules 0, 1, and 2 are core modules whereas the other modules are the external
modules. The dependencies between the core modules are bi-directional whereas the dependencies
between core modules and external modules are unidirectional. The rationale behind choosing such a
product structure is that it represents a wide range of products developed using mass collaborative
processes. Further details are provided by Panchal [8].

Figure 1 - Example product
architecture used in this

3.2. Participants and their Decisions in the Proposed Model

The participants in a mass collaborative product development process are modeled as agents. Each
participant is associated with a parameter called the probability of participation. There are three
decisions that each participant makes during each cycle — a) deciding whether to contribute to the

1-562 ICED'09

effort or not, b) deciding which module to contribute to, and c¢) deciding which participants to
collaborate with. These decisions affect the speed and patterns in which products are developed and
the structure of the communities developed around the product development effort.

3.2.1. Deciding Whether to Participate or Not

The parameter ‘probability of participation’ quantifies the probability that a particular participant
contributes to the product development effort during a particular cycle. The probability of
participation is dependent on various factors such as the cost associated with participation (which
generally refers to the investment of effort by the participant), the benefit of participation (which can
be due to a variety of factors such as personal satisfaction, recognition, etc.) Panchal [8] models the
preferences of participants using two parameters - cost and value. The participation scenario is
modeled using the game of involuntary altruism [30]. The decisions are modeled as the mixed
equilibrium strategy of the involuntary altruism game. Based on the mixed equilibrium strategy, each
participant determines a probability (ay*) based on which he/she participates in the product
development effort. The probability is given by: ay* = I-(c/v)"™" where ¢, v and N are the cost and
the value and the number of participants respectively.

In this paper, instead of modeling the cost and benefits of participants separately, the decision model
is simplified by directly introducing a parameter called the probability of participation (). Further,
as the product develops, more participants may see the value in the product being developed and may
get interested in the mass collaborative effort. Hence, the probability of participation increases as the
product develops. This is modeled by assuming that the probability of participation (¢;,) of each
participant grows at a rate proportional to the percentage completion of the entire product (K,,.Cpercen),
where K, is a constant and Cpc. 1S the percentage completion of the project.

3.2.2. Deciding which Module to Contribute to

Having decided whether to contribute to the product development effort or not, the next decision is to
choose the module to contribute to. The decision to join a particular module is governed by
preferential attachment. While making this decision, the primary factor is the participants’ experience
on different modules. Participants generally contribute to modules that they are most familiar with.
Hence, a participant determines the module to work on with a probability (¢,) that is proportional to
the amount of contribution that he/she has made to a particular module ¢,, = K,,.E;; where K,, is a
constant and E;; is the participant i’s effort on module ;.

In addition to that, the participants are also likely to participate in the development of dependent
modules. The dependencies between modules increase a person’s likelihood of working on dependent
modules. This is true in real mass collaborative efforts because of the changes in the dependent
modules resulting from the changes in originating modules. This aspect is modeled in this paper by
increasing the probability of contribution on that module by a factor that is proportional to the
strength of dependency between a pair of modules. In other words, the dependency strengths in the
product model are also used to model the probability of participation in related modules.

The decision is applicable to participants who have contributed before. However, the participants who
have not contributed to any of the modules cannot use this decision criterion. Their preference for a
particular module is proportional to the number of participants who have contributed to that module.
This decision is based on the power-law distribution observed in the OSS literature. Xu and Madey
[15] observe that developers sequentially choose more popular projects to join. The projects with high
number of participants (i.e., the most popular projects) attract even more participants [17].

3.2.3. Deciding which Participant to Collaborate with

After deciding the module to work on, the last decision modeled in this paper is the decision to
identify the specific participants to collaborate with. This decision is based on the observation in the
open source literature that OSS developer-networks are scale free networks whose degree distribution
follows a power law. Xu and Madey [15] discuss that the OSS network grows as the participants
sequentially join the projects. Further, these networks are governed by preferential attachment, i.e.,
the probability of two nodes being connected is related to the node’s degree. In this paper, the
individuals decide to collaborate with specific participants with a probability (&) which is
proportional to the target participants’ contribution to that module, o, = K..E;; where K. is a constant
and E;; is the effort of participant i on module j chosen in Section 3.2.2.

ICED'09 1-563

3.2.4. Development of the Community

Having decided the participant to collaborate with, the participant creates a directed link with the
collaborating partner. This link is called a ‘community link’. The network of participants connected
via the community links represents the structure of the community. The community links are
associated with a weight signifying the strength of that community link, which is quantified as the
number of times two participants collaborate with each other. In other words, the community is
modeled as a weighted directed graph. During their first collaboration, a community link is
instantiated and the link strength is set to 1. If two participants have already collaborated with each
other once, and they decide to collaborate again, the strength of the community link is increased by 1.
To help the participants make these decisions, each participant records the amount of contribution
made to each module and the community links with different people. Based on the connections
between different people and the strengths of the links, the structure of the community is modeled
using the SNA metrics described in Section 2.2.

3.3. Initialization and Execution of the Model

The model is initialized by creating a specified number of total participants (). Each participant is
randomly assigned a probability of participation within a range of [0 Pyg] where Pyg is the upper
bound of probability of participation. A uniform random distribution function is used to assign the
probabilities of participation. After initializing the participants, a certain number of initial participants
are assigned to each module. These participants represent the group of initially active participants.
The initial number of participants can either be equal for all the modules or can be different to model
different scenarios. The initial active participants are randomly assigned values for initial amount of
contributions for corresponding modules. An active participant is connected with all the other active
participants associated with the corresponding modules through community links. This represents the
fact that the initial participants are closely connected with each other. In other words, the network
representing the community of initial participants associated with a module is completely connected.
After the model is initialized, it is executed in cycles. Each cycle represents one unit of time. During
each cycle, all participants make the three decisions described in the previous section, i.e., each
participant decides whether to contribute or not based on his/her probability function. If the decision
is in favor of contribution, he/she selects the module to contribute to, and then decides the participant
to collaborate with. Based on the contribution of the participants to different modules, the entire
product evolves and through the collaboration between different participants, the community also
evolves with time.

In the following section, one instantiation of the model is executed and the representative results from
the model are presented. The initialization parameters for the results presented in the following
section are shown in Table 1.

Table 1 - Values of initialization parameters used

Parameter Values of the parameters used
Total number of participants 1000
Growth rate of modules 1%
Initial number of participants working on each module 4
Constant K, for probability of participation 0.00005
Decision Parameters (K, K,) 1.5 each
Initial upper bound of participation probability (Pyz) 0.1
Initial work performed by initial participants 1%

4. RESULTS FROM THE EXECUTION OF THE MODEL

The model is executed for the product model shown in Figure 1 and the parameter values in Table 1.
The evolution of modules and the number of participants associated with different modules are
discussed in Section 4.1. The community structure and the effort distribution within the community
are presented in Section 4.2. The effect of product dependencies on the community structure is
illustrated in Section 4.3.

4.1. Evolution of Modules and Number of Participants Associated with Different

1-54 ICED'09

Modules

The evolution of modules over time is shown in Figure 2. In the figure, the evolution of Modules 0, 1
& 2 (which are the core modules), Modules 5 & 6 (that are dependent on the core modules) and
Modules 7 & 8 are shown. Modules 3 and 4 are not shown for the sake of clarity of the figure. Note
that the Modules 6 and 7 have the highest evolution rates whereas the evolution of the core modules
(0, 1 & 2) is the slowest. It is clear that the rate of evolution is dependent on the dependencies
between modules. In an earlier publication, Panchal [8] considered the effect of dependencies on
module evolution. The assumption in the model by Panchal [8] is that only one person works on a
module during a given cycle. Since only one person works at a time on a module, the evolution is only
governed by the module dependencies. To simulate the effect of the collaboration between
participants within a community, that assumption is relaxed in the current paper. Hence, the rate of
evolution of modules is also dependent on the number of participants working on those modules.

Evolution of Modules
120

¢ 100 1

)

'ﬁ Module 6 —+—Module 0
_E' 80 - = Module 1
o —&— Module 2
9 60 ~— Module 5
g ‘Modu\e 5 Module 8 —*-Module 6
g 40 4 —e— Module 7
g —— Module 8
2 20

Module 0
Q e T T T T T T
0 20 40 60 80 100 120 140 160 180 200
Time
Figure 2 - Evolution of modules
Community Size
800
2
s —+— Module 0
2 = Module 1
% —#—Module 2
e_. — Module 5
g —*- Module 6
2 —e— Module 7
E —— Module 8
z
o® ‘ : ; ; ; ; ‘ ‘ ‘
0 20 40 60 80 100 120 140 160 180 200
Time

Figure 3 - Growth of number of participants associated with individual modules

ICED'09 1-565

The number of participants
associated ~ with different
modules for this simulation run
is shown in Figure 3. Note that
the number of participants
grows the fastest for Modules
6 and 7. This steep rise in the
number of participants
associated with this module is
due to the decision rule that
new participants have a higher
probability of working on the
modules that already have
higher number of participants
(see Section 3.2.2). After a
module has grown sufficiently,
the number of new participants Figure 4 - Community structure (t = 25)
becomes almost constant. For
example, after 25 time steps, the number of people joining the network for Modules 6 and 7 stabilizes.
Note that due to the dependencies of Modules 6 and 7 with other modules, there is significant amount
of rework required as the other modules are developed. There is a slow growth in the community even
after 25 time steps due to the rework. The evolution of core modules (0, 1, and 2) is slow because of
two reasons — high coupling between modules and low number of participants.

4.2. Community Structures

As participants collaborate with other participants on developing the modules, the community grows
around the product development effort. As the product development proceeds, different clusters start
emerging within the community. The evolution of these clusters is based on the interdependencies
between modules. A sample network structure at time step equal to 25 is shown in Figure 4. Various
clearly identifiable clusters are observed in the network structure. The interdependent modules have
community structures that are more closely connected whereas the modules with weaker
dependencies have clearly identifiable participant clusters. This is due to the decision rule involving
collaboration with participants on related modules. The structure of this network can be characterized
in terms of the SNA metrics presented in Section 2.2. The values of these metrics for the diagram
shown in Figure 4 are listed in Table 2.

Table 2 — Values of the SNA metrics for the community structure shown above

Metric Value

Connectedness 0.5025

Hierarchy 0.6374

Efficiency 0.9971

Least Upper Bound (LUB) 0.7824

Overall Graph Clustering Coefficient 0.035
Weighted Clustering Coefficient for the Graph 0.033
Network Centralization 0.81%

The distribution of the amount of effort invested in the mass collaborative effort at time step equal to
25 is shown in Figure 5. Note that the participants’ effort follows an exponential distribution with
very few participants investing greater amount of effort and significantly greater number of partici-
pants investing small effort. Similarly, the number of connections with collaborators is also
exponentially distributed as shown in Figure 6. Very few participants have large number of
collaborations with other participants and a large number of participants have only few collaborators.
This trend is analogous to the one found in the open source literature [31].

1-56 ICED'09

1000
» 900 4 y = 1938.5¢ 2000
§ 800 | o
§ 700 -
£ 600 -
o 500
‘s
O 400 4 \
2 300
E 200
Z 100
0 : : : - =
0 2 4 6 8 10
Amount of Effort

Figure 5 - Distribution of Effort (t=25)

Table 3 — SNA metrics for five different runs

Run | Connectedness | Hierarchy | Efficiency LUB Clustering | Weighted | Centralization

Clustering
1 0.5025 0.6374 0.9971 0.7824 0.035 0.033 0.81%
2 0.4968 0.6504 0.9971 0.7693 0.041 0.032 1.56%
3 0.4982 0.7204 0.9973 0.6937 0.040 0.034 1.01%
4 0.4870 0.6902 0.9971 0.7240 0.038 0.031 1.16%
5 0.4787 0.6742 0.9972 0.7436 0.043 0.037 0.91%

It is important to note

that the results shown in 180

Table 2 are from a 160 o y = 179.13672%%

single execution of the 140

model. The model is 2 120 - .

inherently stochastic g 1001

due to the random o 80

initialization of L 601 \

parameters such as 40

amount of initial effort 20 .

and participants’ 0 w w —t—s

preference, and due to 0 5 10 15 20

the decisions made Number of Connections

during the process using

probabilistic rules. This Figure 6 - Distribution of number of connections (t=25)

results in different
model outputs for each execution of the model. The SNA metrics for five different runs are shown in
Table 3. The variation in the results is significant due to the fact that the model is based on positive
feedback which amplifies the parameters such as the number of participants working on different
modules. This highlights the complex dynamical nature of mass collaborative processes. In order to
determine the conditions under which targeted evolution can take place, there is a need to determine
robust conditions under which evolution can take place.

4.3. Effect of Product Dependencies on the Community Structure

As mentioned earlier in the paper, the product dependencies have a significant effect on the commu-
nity structure. In order to explore the effect of these dependencies on the community structure, four
different combinations of the dependencies between core modules (Modules 0, 1 & 2), dependencies
from core modules to dependent modules (Modules 3, 4, 5 & 6) and the dependencies between depen-
dent modules (Modules 7 & 8) are chosen. The model is executed for these dependencies and the
corresponding network structures for time step 25 are shown in Table 4. The dependencies for these

ICED'09 1-57

four combinations are listed in the table. For example, for the result set (a), dependencies are (0,0,0)
which means that all the modules are independent of each other. It is observed in the network diagram
that there are a large number of independent components within the network. In the second set, the
dependencies are (0.3, 0, 0) which means that only the core modules are dependent on each other. All
the other modules are independent. Similarly, the dependencies in results (¢) and (d) are (0.3, 0.15,
0.5) and (0.3, 0.3, 0.15) respectively.

The community structures are characterized in terms of the weighted clustering coefficient and the
hierarchy metrics. The weighed clustering coefficient decreases monotonically from 0.056 to 0.038 as
we go from case (a) to case (d). Similarly, the hierarchy metric also reduces monotonically from
0.7162 to 0.6435. This shows the effect of reducing the module dependencies on the hierarchical
nature of the communities.

Table 4 — Network representations of communities emerging for different dependencies
between modules

(a) Dependencies: (0, 0, 0) (b) Dependencies: (0.3, 0, 0)

£ .'.-’ - .
Weighted Clustering Coefficient: 0.056 Weighted Clustering Coefficient: 0.046
Hierarchy: 0.7162 Hierarchy: 0.6916
(c) Dependencies: (0.3, 0.15, 0.5) (d) Dependencies: (0.3, 0.3, 0.15)

]
Weighted Clustering Coefficient: 0.042 Weighted Clustering Coefficient: 0.038
Hierarchy: 0.6643 Hierarchy: 0.6435

5. CLOSING THOUGHTS

In this paper, an agent-based model for understanding the interrelated nature of product evolution and
community structure is presented. The model consists of two types of entities — the products and the
participants. The products are modeled as directed graphs with modules and interrelationships
between them. The participants are modeled as agents with decision rules. As the participants work on
developing the product, they collaborate and develop associations with each other, thereby resulting in
a community structure. The community structure is characterized using a weighted directed graph
where the weights represent the strength of association among different participants. The structure of
the community is modeled using Social Network Analysis metrics. The model is executed and the
results are shown in this paper for a simple product structure.

1-58 ICED'09

Most of the prior work in the domain of MCPD processes is based on empirical study of successful
open source software development projects. Even in these empirical studies, the relationship between
product structure and organizational structure has not been sufficiently explored. The primary
contribution of this paper is that it presents a step towards understanding the interdependent nature of
product structure and organizational structure as emphasized by the Conway’s law [11]. It is shown
that the evolution of products is dependent on various factors including the participants and their
collaborations. This study is important from the standpoint of understanding the underlying
mechanisms of mass collaborative processes. Without this understanding, it is difficult to replicate the
success of such processes. Agent-based modeling presents a promising approach to studying the
highly coupled dynamics of the product evolution in mass collaborative processes. According to
Tefstein [32] , an agent-based model can be used for various purposes. In this paper, the purpose is to
gain insights into mass collaborative processes and the factors that affect product and community
evolution. The objective is not to exactly simulate all the details of a specific mass collaborative
project. The model complements the empirically based efforts to understand mass collaborative
processes particularly in the domain of open source software development.

This work is an initial step in the direction of gaining complete understanding of mass collaborative
processes. Significant amount of work remains to be done in this area. Specifically, the current model
focuses on the growth of a fixed number of modules. However, in a real world scenario, the product
structure itself may evolve, resulting in an increase in the number of modules over time. Further, a
phenomenon called ‘forking” is common in the open source software development, which means that
at a point in time, developers take an instance of the product (software code) and start independent
development on it, creating a distinct piece of product (software). Two separate product development
efforts can be carried out in parallel. Future work would involve simulating the forking phenomenon.
Finally, it is important to validate the model using data from a real world product development
scenario.

REFERENCES

[1] Tapscott, D. and Williams, A. D. Wikinomics: How Mass Collaboration Changes Everything,
2006, Penguin Group (USA).

[2] Wikipedia - The Free Encyclopedia. 2008, [cited 2008, January 23]; Web Link:
http://en.wikipedia.org/wiki/Main_Page.

[3] Linux, Linux Online - About the Linux Operating System. 2008, [cited 2008, January 23]; Web
Link: http://www.linux.org/info/index.html.

[4] Mozilla. 2008, [cited 2008, January 23]; Web Link: http://www.mozilla.org/about/.

[5] Apache Software Foundation, The Apache HTTP Server Project. 2008, [cited 2008, January 23];
Web Link: http://httpd.apache.org/.

[6] Oscar Project, Oscar: Reinvent Mobility. 2008, [cited 8 February 2008]; Web Link:
http://www.theoscarproject.org/.

[7]1 Open Prosthetics The Open Prosthetics Project: An Initiative of the Shared Design Alliance.
2008, [cited April 11, 2008]; Web Link: http://openprosthetics.org/.

[8] Panchal, J. H. Agent-based Modeling of Mass Collaborative Product Development Processes.
Journal of Computing and Information Science in Engineering, in press, 2009.

[9] Panchal, J. H. and Fathianathan, M. Product Realization in the Age of Mass Collaboration. In
ASME Design Automation Conference, New York City, NY, USA, 2008. Paper Number:
DETC2008-49865.

[10] Sosa, M. E., Eppinger, S. D., and Rowles, C. M. The Misalignment of Product Architecture and
Organizational Structure in Complex Product Development. Management Science, 2004, 50(12),
pp. 1674-1689.

[11] Conway, M. E. How do Committees Invent. Datamation, 1968, 14(5), pp. 28-31.

[12] Weber, S. The Success of Open Source, 2004, Harvard University Press.

[13] Crowston, K. and Howison, J. Hierarchy and Centralization in Free and Open Source Software
Team Communications. Knowledge, Technology, and Policy, 2006, 18(4), pp. 65-85.

[14] Valverde, S. and Sol¢, R. V. Self-Organization Versus Hierarchy in Open-Source Social
Networks. Physical Review E, 2007, 76(4), pp. (046118)1-8.

[15] Xu, J. and Madey, G. Exploration of the Open Source Software Community, NAACSOS 2004,
Pittsburgh, PA.

ICED'09 1-59

[16] Madey, G., Freeh, V., and Tynan, R. Modeling the F/OSS Community: A Quantitative
Investigation. In Free/Open Source Software Development, 2004, (S. Koch, Editor), (Idea
Publishing).

[17] Weiss, M., Moroiu, G., and Zhao, P. Evolution of Open Source Communities. In Proceedings of
the International Conference on Open Source Systems, Springer, 2006, pp. 21-32.

[18] Ye, Y., Nakajoki, K., Yamamoto, Y., and Kishida, K. The Co-Evolution of Systems and
Communities in Free and Open Source Software Development. In Free/Open Source Software
Development, 2005, (S. Koch, Editor), (IGI Publishing, Hershey, PA), pp. 59-82.

[19] Bonabeau, E. Agent-based Modeling: Methods and Techniques for Simulating Human Systems.
Proceedings of National Academy of Sciences, 2002, 99(3), pp. 7280-7287.

[20] Axelrod, R. The Complexity of Cooperation: Agent-Based Models of Competition and
Collaboration, 1997, Princeton, NJ, Princeton University Press.

[21] Wasserman, S., and Katherine F. Social Network Analysis: Methods and Applications, 1994,
Cambridge, Cambridge University Press.

[22] Hanneman, R. A. and Riddle, M. Introduction to Social Network Methods. 2005, [cited 2008
January 12]; Web Link: http://faculty.ucr.edu/~hanneman/

[23] Epstein, J. M. and Axtell, R. Growing Artificial Societies: Social Science from Bottom-Up, 1996,
Cambridge, MA, The MIT Press.

[24] Davidsson, P. Multi Agent Based Simulation: Beyond Social Simulation. In Multi Agent Based
Simulation (LNCS Vol. 1979), 2000 (Springer Verlag).

[25] Krackhardt, D. Graph Theoretical Dimensions of Informal Organizations. In Computational
Organization Theory 1994, (L. Erlbaum Associates Inc., Hillsdale, NJ, USA), pp. 89 - 111.

[26] Borgatti, S. P., Everett, M.G. and Freeman, L.C. Ucinet for Windows: Software for Social
Network Analysis, 2002, Analytic Technologies, Harvard, MA.

[27] Cho, S.-H. and Eppinger, S. D. A Simulation-Based Process Model for Managing Complex
Design Projects. IEEE Transactions in Engineering Management, 2005, 52(3), pp. 316-328.

[28] Cho, S.-H. and Eppinger, S. D. Product Development Process Modeling Using Advanced
Simulation. In ASME 2001 Design Engineering Technical Conferences - Design Theory and
Methodology Conference, Pittsburgh, Pennsylvania, 2001, pp. Paper Number: DETC2001/DTM-
21691.

[29] Leadbeater, C. We-think: The Power of Mass Creativity, 2008, Profile Books Ltd.

[30] Baldwin, C. Y. and Clark, K. B. The Architecture of Participation: Does Code Architecture
Mitigate Free Riding in the Open Source Development Model? Management Science, 2006,
52(7), pp. 1116-1127.

[31] Healy, K. and Schussman, A. The Ecology of Open Source Software Development. In Paper
presented at the annual meeting of the American Sociological Association, Atlanta, GA, 2003.

[32] Testatsion, L. Agent-based Computational Economics: A Constructive Approach to Economic
Theory. In Handbook of Computational Economics, Volume 2, 2006, (L. Tesfatsion and K.L.
Judd, Editors), (Elsevier), pp. 831-880.

Contact: Jitesh H. Panchal

Washington State University

School of Mechanical and Materials Engineering

Pullman, WA 99164 USA

Phone: +1-509-715-9241; Fax: +1-509-335-4662; E-mail: panchal@wsu.edu
URL: http://www.mme.wsu.edu/people/faculty/faculty.html?panchal

Jitesh H. Panchal is an Assistant Professor in the School of Mechanical and Materials Engineering at
Washington State University. He received his B.Tech. from [IT Guwahati (India), and MS and PhD in
Mechanical Engineering from Georgia Institute of Technology, Atlanta. His research interests are in
the field of mass-collaborative design and multilevel design. He is a member of ASME and ASEE.

1-60 ICED'09

